

Grade 1 Awarded		Mark F /)	Required	% candidates achieving grade		
A		71		30.1%		
В		59		25.2%		
С		47		22.5%		
D		41		7.3%		
No award		<41		15.0%		
Se		ection:	Multiple	Choice	Extended Answer	
Average N		age Mark:	21.0	/40	38.9 /60	

2(015	Revi	sed Higher Chemistry Marking Scheme						
MC Qu	Answer	% Pupils Correct	Reasoning						
1	D	90 NewH=84	A Neon is a noble gas with a full outer shell and does not need to form ions. B Neon is a noble gas and is monatomic not diatomic. C Neon is a noble gas and does not need to form bonds to get a full outer shell. D Nitrogen, oxygen, fluorine and neon are all gases at room temperature.						
2	A	85 OldH=80	 ☑A Iodine is a non-metal element with no electrical conductivity ☑B potassium is a metal with a low melting point (63°C) and high electrical conductivity ☑C silicon dioxide is a covalent network and has no electrical conductivity ☑D potassium fluoride is ionic and has no electrical conductivity as a solid 						
3	С	91 OldH=85 NewH=89	A First ionisation energy forms a 1+ ion from the element in the gaseous state 3 First ionisation energy forms a 1+ ion from the element in the gaseous state C 1 st ionisation energy: removal of one mole of electron from one mole of atoms in the gaseous state. D Element must be single atoms in the gaseous state before ionisation						
4	В	86 OldH=81	 oup 3 elements have a low 3rd ionisation energy and a very high 4th ionisation energy removal of the 3rd electron creates a full outer shell removal of the 4th electron breaks into a full outer shell 						
5	A	78 OldH=74 NewH=62	\square A X-Y: activation energy (E _a) for the forward reaction \blacksquare B Y-X: would give a negative value but activation energy (E _a) must be endothermic \blacksquare C Y-Z: would be the enthalpy change (\triangle H) for the reverse reaction \blacksquare D Z-Y: would be the enthalpy change (\triangle H) for the forward reaction						
6	С	46 NewH=38	$ \begin{aligned} & \forall A \text{ OH}^{*} \text{ would react with both } Br_{2} \text{ or } I_{2} \text{ as } OH^{*} \text{ is above both on } ECS \\ & O_{2}^{+} 2H_{2}O + 4e^{-} \longrightarrow 4OH^{*} \\ & Br_{2}^{+} 2e^{*} \longrightarrow 2Br^{*} \\ & upper reaction reverses \\ & 4OH^{+} \longrightarrow O_{2}^{+} 2H_{2}O + 4e^{*} \\ & H^{+} \longrightarrow O_{2}^{+} 2H_{2}O + 4e^{*} \\ & H^{+} \longrightarrow O_{2}^{+} 2H_{2}O + 4e^{*} \\ & H^{+} \longrightarrow O_{2}^{+} 2H_{2}O + 4e^{*} \\ & Br_{2}^{+} 2e^{*} \longrightarrow 2Br^{*} \\ & A OH^{+} \longrightarrow O_{2}^{+} 2H_{2}O + 4e^{*} \\ & H^{+} \longrightarrow O_{2}^{+} 2H_{2}O + 2H^{*} \\ & H^{+} \longrightarrow O_{2}^{+} 2H^{+} \\ & D^{+} \longrightarrow SO_{3}^{2^{+}} H_{2}O \\ & Br_{2}^{+} 2e^{*} \longrightarrow SO_{3}^{2^{+}} H_{2}O \\ & Br_{2}^{+} 2e^{*} \longrightarrow SO_{3}^{2^{+}} H_{2}O \\ & Br_{2}^{+} 2e^{*} \longrightarrow 2Br^{*} + H^{+} 2e^{*} \\ & Br_{2}^{+} 2e^{*} \longrightarrow 2Br^{*} + SO_{4}^{2^{+}} + 2H^{*} 2e^{*} \\ & Br_{2}^{+} 2e^{*} \longrightarrow 2Br^{*} + SO_{4}^{2^{+}} + 2H^{*} \\ & H^{+} D \longrightarrow 2Br^{+} SO_{4}^{2^{+}} + 2H^{*} \\ & H^{+} D \longrightarrow 2Br^{+} SO_{4}^{2^{+}} + 2H^{*} \\ & H^{+} D \longrightarrow 2Br^{+} SO_{4}^{2^{+}} + 2H^{*} \\ & H^{+} D \longrightarrow 2Br^{+} SO_{4}^{2^{+}} + 2H^{*} \\ & H^{+} D \longrightarrow 2Br^{+} SO_{4}^{2^{+}} + 2H^{*} \\ & H^{+} D \longrightarrow 2Br^{+} SO_{4}^{2^{+}} + 2H^{*} \\ & H^{+} D \longrightarrow 2Br^{+} SO_{4}^{2^{+}} + 2H^{*} \\ & H^{+} D \longrightarrow 2Br^{+} SO_{4}^{2^{+}} + 2H^{*} \\ & H^{+} D \longrightarrow 2Br^{+} H^{+} \\ & H^{+} D \longrightarrow 2Br^{+} H^{+} \\ & H^{+} D \longrightarrow 2Br_{2}^{+} H^{+} \\ & H^{+} D \longrightarrow 2$						

Г

2

٦

7	С	25 OldH=26	$\begin{array}{cccc} gfm \ \text{Na} = 23g \ \text{mol}^{-1} & \text{mass} = 4.6g \\ \text{no. of mol} = \frac{\text{mass}}{gfm} = \frac{4.6g}{23g \ \text{mol}^{-1}} = 0.2 \text{mol} & \text{Molar Volume} = 24 \ \text{litres mol}^{-1} & \text{Volume} = 4.8 \ \text{litres} \\ \text{no. of mol} = \frac{\text{Volume}}{\text{Molar Volume}} = \frac{4.8 \ \text{litres mol}^{-1}}{23 \ \text{litres mol}^{-1}} = 0.2 \text{mol} \\ \hline & & \text{Molar Volume} & \text{Molar Volume} = \frac{4.8 \ \text{litres mol}^{-1}}{23 \ \text{litres mol}^{-1}} = 0.2 \text{mol} \\ \hline & & \text{Molar Volume} & \text{Molar Volume} & \text{Molar Volume} = \frac{4.8 \ \text{litres mol}^{-1}}{23 \ \text{litres mol}^{-1}} = 0.2 \text{mol} \\ \hline & & \text{Molar Volume} & \text{Molar Volume} & \text{Molar Volume} \\ \hline & & \text{Molar Volume} & \text{Molar Volume} & \text{Molar Volume} \\ \hline & & \text{Molar Volume} & \text{Molar Volume} & \text{Molar Volume} \\ \hline & & \text{Molar Volume} & \text{Molar Volume} \\ \hline & & \text{Molar Volume} & \text{Molar Volume} \\ \hline & & \text{Molar Volume} & \text{Molar Volume} \\ \hline & & \text{Molar Volume} & \text{Molar Volume} \\ \hline & & \text{Molar Volume} & \text{Molar Volume} \\ \hline & & Mol$					
8	D	96	 ☑A structure shown is 3-methylbutan-2-ol ☑B structure shown is 4-methylpentan-2-ol ☑C structure shown is 2-methylbutan-2-ol ☑D structure shown is 2-methylpentan-2-ol 					
9	A	33 NewH=29	 A propanol does not react with NaOH but sodium propanoate would form in the neutralisation reaction between alkali (NaOH) and acid (ethanoic acid) B all ethanoic acid would react with NaOH to form a salt plus water C no propylethanoate would be formed as H⁺ ions are required to form esters D ester theoretically formed would be propylethanoate not ethylpropanoate 					
10	D	60	 A essential oils can be used in cleaning products as they dissolve grease B essential oils are widely used because of their distinctive aromas C essential oils release their aromas due to their volatile nature. D essential oils are not soluble in water as they are largely hydrocarbon based 					
11	С	77 NewH=74	he -OH bond in erthyromycin can be reacted with a carboxylic acid to form an ester by condensation reaction.					
12	В	63 NewH=50)il with lowest melting point will have the highest number of C=C double bonds . highest number of C=C double bonds would react with the most iodine . highest iodine number					
13	С	89	fat					
			Implify Implify Implify Implify Implify Implify Implify Implify Implify Implify Implify Implify Implify<					
14	D	72	\blacksquare C the monomers drawn are not amino acids (which have -NH ₂ and -COOH groups) \blacksquare D the monomers drawn are both amino acids with an -NH ₂ group and a -COOH group					
14 15	D	72 92	 C the monomers drawn are not amino acids (which have -NH2 and -COOH groups) D the monomers drawn are both amino acids with an -NH2 group and a -COOH group A butan-2-ol: secondary due to 2 carbons attached to the carbon with the -OH group B The carbon with the -OH group is only ever attached to 1 other carbon - not secondary C 2-methylpropan-1-ol: primary due to 1 carbon attached to the carbon with the -OH group D 2-methylpropan-2-ol: tertiary due to 3 carbons attached to the carbon with the -OH group 					
14 15 16	D A B	72 92 81 NewH=79	 In the analysis of a performed in the class of a performance in the infer internet in the infer of a performance in the infer of the performance in the performance in the infer of the performance in the performance in the performance in the infer of the performance in the performance in the performance in the infer of the performance in the periformance in the performan					
14 15 16 17	D A B	72 92 81 NewH=79 64 NewH=58	EC the monomers drawn are not amino acids (which have $-NH_2$ and $-COOH$ groups) $\square D$ the monomers drawn are both amino acids with an $-NH_2$ group and a $-COOH$ group $\square A$ butan-2-ol: secondary due to 2 carbons attached to the carbon with the $-OH$ group $\square B$ The carbon with the $-OH$ group is only ever attached to 1 other carbon - not secondary $\square C$ 2-methylpropan-1-ol: primary due to 1 carbon attached to the carbon with the $-OH$ group $\square D$ 2-methylpropan-2-ol: tertiary due to 3 carbons attached to the carbon with the $-OH$ group $\square A$ Glycerol formed has three $-OH$ groups on a different carbon each $\square C$ different fatty acids produced by hydrolysis of oils, not just $C_{17}H_{35}COOH$ $\square D$ different fatty acids produced by hydrolysis of oils, not just $C_{17}H_{33}COOH$ $\square A$ oxidation: increase in oxygen : hydrogen ratio in molecule $\square B$ reduction: decrease in oxygen : hydrogen ratio in molecule $\square C$ hydrolysis: molecules splitting into smaller molecules with H_2O added at break $\square D$ condensation: small molecules joining to form larger molecule with H_2O removed					
14 15 16 17 18	D A B A B	72 92 81 NewH=79 64 NewH=58	 International and the dracter produced at of or mice from the hydrolysis of a poryanide is a construction of the provided of the					

			Amine group	Carboxyl group	Carbonyl group	Amide/Peptide link		
20	~	00	_н	,0	0	но		
20 0	C	80	—N_	$-c_{2}^{//2}$				
			<u>`н</u>	`OH	- <i>C</i> -	-N-C-		
			$\Delta H_1 = \Delta H_2 + \Delta H_3 +$	- ΔH4	$W = \Delta H_1 = -210 I$	<u>≺J mol⁻¹</u> ► Z		
		69	$\Delta H_4 = \Delta H_1 -$	ΔH_2 - ΔH_3		1		
21	A	OldH=64	$\Delta H_4 = -210 - ($	(-50) - (-86)	$\sqrt{\Delta H_2} = -50 kJ mol$	$ ^{-1} / \Delta H_4$		
		NewH=58	$\Delta H_4 = -74 \text{kJ mol}^{-1}$	1	∆H3 = -86k	(J mol ⁻¹ , , ,		
			But ΔH for Z to Y	′ = +74kJ mol ⁻¹	X	•••••• y		
			X A 2I _(g) + 2e ⁻	→ 2I ⁻ (g) should have	$\Delta H = 2x - 349 kJ = -$	698kJ		
		72	⊠B 2I _(g) + 2e ⁻	→ 2I ⁻ (g) should have	$\Delta H = 2x - 349 kJ = -$	·698kJ		
22	Ν	/3	$\mathbb{K}C$ $I_{2(g)}$	→ 2I(g) should have	$\Delta H = +243 \text{KJ}$			
		OldH=70 NewH=62	Enthalpy of sublimat	ion I2(s)	$ I_{2(a)}$	∆H = +60kJ		
			Bond dissociation of	I_2 $I_2(g)$	→ 2I(g)	∆H = +243kJ		
			2xelectron affinity o	of iodine 2I(g) + 2e ⁻	→ 2I ⁻ (g)	∆H =-698kJ		
		88	☑A at equilibrium rate	e of the forward react	tion = rate of reverse i	reaction		
23	Α	0IdH=87	B at equilibrium the	concentration of reactions	tants and products are	e constant not equal		
		NewH=89	D catalysts do not c	hange the position of e	equilibrium	-quinor ium		
			EA Forward reaction:	2mol gas \rightarrow 1mol gas .	forward reaction dec	creases pressure		
24	R	84 OldH=83	B Forward reaction:	2mol gas \rightarrow 2mol gas	∴no change in pressur	e		
6 1	U		EC Forward reaction:	3mol gas \rightarrow 2mol gas	forward reaction dec	creases pressure		
			The red colour will fac	4morgas → 2morgas le as equilibrium shifts	to right.	creases pressure		
		33 OldH=40	🗷 A Equilibrium shifts	to left as product (H⁺) is added to equilibriu	ım		
25	С		B Equilibrium shifts to left as product (Br ⁻) is added to equilibrium					
			C Equilibrium shifts	to right as product (B	r ⁻) is removed by Ag ⁺ B	r ⁻ (s) precipitation		
			Equilibrium shifts	to left as product (UE	sr') is added to equilib	rium		
24		D 54	\mathbf{E} B 1mol gas \rightarrow 1mol g	as: products have same	e volume than reactant	ts		
26	D		⊠C zero moles of gas	\rightarrow 1mol gas: products	have greater volume tl	nan reactants		
		01011-01	\square D 2mol gas \rightarrow zero r	noles of gas: products	have less volume than	reactants		
			<u>Bond I</u> 1x H-H = 1x432k	<u>Breaking Steps</u> T = 432kT	Bond Forming	<u>) Steps</u>		
			1x Cl-Cl = 1x243k	J = 243kJ	2x H-Cl = 2x428	kJ = 856kJ		
27	В	76	Total	= 675kJ	To [.]	tal = 856kJ		
			$\Delta H = 200$	675	- 85	6		
			ΔH =	-181 kJ mol ⁻¹				
20	~	67	Average temp of rea	ctants = = 19°C	Temperature o	of Products = 27°C		
20	C	0/	Change in temperature	2 27°C - 19°C = 8°C	·			
			EA The flow of cold w	vater should be in the	opposite direction to t	the flow of distillate		
29	R	28	☑B A heating mantle v	would prevent ignition	of vapours and the cor	ndenser is set up right		
		20	SC The flow of cold w	ater should be in the m the Runcan burner of	opposite direction to t	he flow of distillate		
			A Swirling the flack	mine bursen burner c mixes the chemical th	oroughly and the end-	point is accurate		
20		Λ	B Using a white tile	ensures that the colou	ir changes is accuratel	y determined		
30	υ) 40	EC Adding solution dr	opwise at the end ensu	ures the end-point is a	ccurate to one drop		
			☑D Repeating a titrat	ion improves the reliat	pility of a reaction not	the accuracy		

2015 Revised Higher Chemistry Marking Scheme								
Long Qu	Answer	Reasoning						
1a	London dispersion forces covalent bonds	The covalent bonds inside the S_8 rings do not break as the sulphur melts. When sulphur S_8 nelts, London dispersion forces between the S_8 rings must be overcome but as these are weak then sulphur has a lower melting point. Silicon dioxide is a covalent network. Covalent bonds must be broken before a covalent network will melt into a liquid resulting in a high melting point.						
1b(i)	S / S / S / P - P P	 Any structure for P₄S₃ that obeys the following valency rules: 3 bonds per P atoms 2 bonds per S atom 						
1b(ii)	Increased nuclear attraction/charge or more protons in sulphur nucleus	Sulphur and phosphorus are in the same period of the periodic table and the same shell is being filled with electrons. Sulphur has 16 protons which pull in the outer shell of the sulphur atom further than the 15 protons in a phosphorus nucleus would do.						
1b(iii)	Greater number of London dispersion forces between S ₈ molecules than P4 molecules	Both P_4 and S_8 contain non-polar molecules. Both substances are solid at room temperature due to the number of London dispersion forces between the molecules which bring the molecules close enough to be a solid. Sulphur has a higher melting point than phosphorus due to greater numbers of London dispersion forces between molecules of 8 atoms than phosphorus atoms with only 4 atoms inside the molecule.						
2a(i)	Diagram showing:	1mark: workable apparatus for passing the steam through the strawberry gum (steam must pass <i>through</i> the strawberry gum leaves not just pass over) 1mark: workable apparatus for condensing the steam and essential oil						
2a (ii)	(fractional) distillation or chromatography	Distillation separates chemicals with different boiling points. Chromatography separates chemicals due to differences in polarity and size.						
2b		$ \begin{array}{c} H H O & H \\ - & H \\ - & - & - \\ - & - $						
2c(i)	Answer to include:	methyl cinnamate is the ester formed from cinnamic acid and methanol gfm cinnamic acid = 148g gfm methanol = 32g no. of mol = mass gfm = d.5g gfm = d.2g gfm = d						
2c(ii) Part A	52%	Cinnamic acid + methanol → methyl cinnamate + water 1mol 148g 6.5g % yield = <u>actual</u> theoretical × 100 = $\frac{3.7}{7.1}$ × 100 = 52%						
2c(ii) Part B	£24.59	Cinnamic acid + methanol → methyl cinnamate + water 6.5g 3.7g (at 52% yield) 6.5g × ¹⁰⁰ / _{3.7} 100g =175.7g 250g cinnamic acid costs £35.00 175.7g cinnamic acid costs £35.00 × ^{175.7} / ₂₅₀ = £24.59						

За	forms hydrogen bonds with water	ydrogen bonding is formed when N—H, O—H or H—F bonds interact with ater molecules. These bonds are highly polar allowing the compounds ontaining these bonds to be soluble in a polar solvent like water.					
3b(i)	Any one carboxyl group circled similar to:	-c = O + H					
3b(ii)	H⁺ ions are not produced until dissolved in water	cidity and alkalinity are water-based systems and no pH can be measured if water absent. When water is added to solid citric acid, H ⁺ ions will dissociate from arboxyl group and can then react with hydrogencarbonate ions.					
3c (i)	R	Endothermic reactions take energy from the surroundings and lower the temperature in those surroundings. On a potential energy diagram the products are higher than the reactants. Exothermic reactions give heat to the surroundings and raise the temperature of the surroundings. On a potential energy diagram the products are lower than the reactants.					
3c(ii)	Answer to Include:	1 st Mark: Volume/mass of water 2 nd Mark: Change in temperature or initial and final temperature					
3d	4.29 litres	$gfm NaHCO_{3} = 84g \qquad no. of mol = \frac{mass}{gfm} = \frac{15g}{84g} = 0.179mol$ $C_{6}H_{8}O_{7} + 3NaHCO_{3} \longrightarrow C_{6}H_{5}O_{7}Na_{3} + 3H_{2}O + 3CO_{3}$ $3mol \qquad 3mol \qquad 1mol \qquad 0.179mol$ $0.179mol \qquad 0.179mol$ $ffm CO_{2} = (1x12) + (2x16) = 12 + 32 = 44g$ $(alumna = na = af malus Malar Malur = 0.170 + a.24 \text{ m} = a.14 + 0.24 \text{ m}$					
4a	Citronellol or geraniol or anisyl alcohol	Only peaks B (citronellol), C (geraniol) and E (anisyl alcohol) appear on all three chromatograms					
4b	Counterfeit perfumes have lower concentrations of compounds	The area under each peak is proportional to the quantity of that chemical in the sample. The smaller the peak, the lower the concentration of that chemical.					
4 c(i)	Inert/does not react with molecules	Fas chromatography needs a carrier gas to flow through the separating column. The sample compounds pass through the column at different rates dependent on their attraction to the mobile phase (the helium gas) or the stationary phase (the contents of the column)					
4 c(ii)	Size of molecules or temperature of column	The smaller molecules will pass through the column more quickly than larger molecules. Increasing the temperature in the column would increase the kinetic energy of the particles and they would pass through the column more quickly.					
4 d(i)	Terpenes	Terpenes are formed when multiple units of isoprene join together.					
4 d(ii)	3,7-dimethylocta-1,6-dien-3-ol	-CH3 groups on carbon C3 and C7 B carbons with 2xC=C on C1 and C6 OH group on C3					
4e	1.7g	1kg body mass allowed 0.10mg coumarin 75kg body mass allowed 0.10mg coumarin x ⁷⁵ / ₁ = 7.5mg coumarin = 0.0075g coumarin 4.4g coumarin contained in 1000g cinnamon powder 0.0075g coumarin contained in 1000g cinnamon powder x ^{0.0075} / _{4.4} = 1.70g cinnamon powder					

		3 mark answer	2 mark answer	1 mark answer			
5	Open Question Answer to Include:	Demonstrates a <u>good</u> understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	Demonstrates a <u>reasonable</u> understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.	Demonstrates a <u>limited</u> understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.			
		1 st Mark: Sodium lauryl sulphate has both a hydrophobic/oil-soluble part and a					
6a	Answer to include:	Image: Non-Instant Image: Non-Instant 2 nd Mark: Correct identification of ionic head as hydrophilic/water-soluble part of molecule and hydrocarbon tail as hydrophobic/oil-soluble part of molecule. Description of how this results in alobule/ball-like structure with					
		oil/grease held in	side globule or mention or er	nulsion			
6b(i)	24.8	A line of best fit should be drawn on the graph which ignores the obvious rogue result. When viscosity = 1.5 then the %NaCl (by mass) on the best fit straight line = 2.25% 1 cm ³ handwash contains 1.1g 11 litre handwash = 1000cm ³ handwash 1.1g x ¹⁰⁰⁰ / ₁ = 1100g 100% mass of handwash = 1100g 2.25% mass = 1100g x ^{2.25} / ₁₀₀					
	Mass of sodium chloride	The viscosity peaks at	3.9 units at around 3.1	5% NaCl (by mass). If			
6b(ii)	becomes too high the	the NaCl increases beyond this point then the viscosity starts to					
	VISCOSITY WIII decrease	decrease and NaCl is being wasted.					
6c	green	E133 absorbs wavelengths corresponding to Violet, Indigo and Blue. E102 absorbs wavelengths corresponding to Red, Orange and Yellow. only the wavelengths corresponding to green are transmitted.					
7a	— С — Н О	Aldehyde groups contain a carbonyl (C=O) group with a hydrogen atom attached. The carbon in the aldehyde group is always carbon number one in any numbering system assigned to an aldehyde when naming the compound.					
7b	H H CH₂OH HO C C C O I O H C C C O H C C C O OH I CH₂OH	Problem Solving Question	1				
7c	Condensation	Condensation Polymerisation: small molecules (e.g. glucose) joining up to make a larger molecule (e.g. starch) with a small molecule (e.g. water) removed at the joins.					
7d	Answer to include:	Amylopectin molecules are unable to pack closely together due to shape an can separate more easily. (It has more readily accessible -OH groups.)					
8	Open Question Answer to Include:	Amylose molecules pack closer together and more difficult to separate.Amylose molecules pack closer together and more difficult to separate.Amylose molecules pack closer together and more difficult to separate.Amylose molecules pack closer together and more difficult to separate.Amylose molecules pack closer together and more difficult to separate.Amylose molecules pack closer together and more difficult to separate.Amylose molecules pack closer together and more difficult to separate.Amylose molecules pack closer together and more difficult to separate.Amylose molecules pack closer together and more difficult to separate.Amylose molecules pack closer together and more difficult to separate.Amylose molecules pack closer together and more difficult to separate.Demonstrates a goodDemonstrates a reasonableunderstanding of the chemistryDemonstrates a limitedunderstanding of the chemistryDemonstrates a limitedinvolved. A good comprehension ofDemonstrates a relevant tothe situation, showing that theDemonstrates a litule of theproblem is understood.Demonstrates a little of thechemistry within the problem.Understood.					

		1 st Mark:				calcium carbonate		
9a (i)				ammonia				
	Flow chart				carbon dioxide		calcium oxide	
			sodium			ammonium		
	complete with:	2nd Mark:	hydrogencarbonat	te		chloride		
				wa	ter			
			sodium carbonate	e				
	Calainna abhanida (The calcium chlor	ide can be sol	d for prot	it even tho	ugh it is not t	he main	
9 a(ii)	byproducts can be sold	product of the Solvay Process. If the calcium chloride is not sold for profit						
		then it would have	e to be respor	nsibly disp	osed of at a	a cost.		
Qh	Adding Na ⁺ shifts	Brine contains Na	tions. Nation	s are a re	actant in th rium the e	ie reaction. W quilibrium chif	hen a te to the	
90	equilibrium to right	right to make add	litional produc	ts and re	move the ac	ditional Natio	ons.	
			$CaCO_3 + 2$	NaCl —	Na₂CO ₃ +	CaCl ₂		
					<u> </u>	6-0	AL I- 1701/T	
		0	CaO +	ac03 —♥ H2O —♥	• CO ₂ + • Ca(OH) ₂	CaU	ΔH=+1/8KJ ΔH=-65kJ	
		NaCl + NH ₃ +	CO ₂ +	H₂O →	NaHCO3 +	NH4Cl	∆H=-79kJ	
		0	2N Ca(OH)2 + 21	NH₄CI —►	• Na ₂ CO ₃ + • CaCl ₂ +	$H_2O + CO_2$ $2H_2O + 2NH_3$	∆H=+85kJ ∆H=-20kJ	
9c	20 kJ mol ⁻¹						11 1701.T	
		0		ac∪₃ —●		680	∆H=+178kJ ∆H=-65kJ	
		€x22NaCl + 2NH3 +	- 2602 + 2	₩₂⊂→	2NaHCQ3 +	201440	∆H=-158kJ	
		6		kaHCQ3 → XHT≈Cl →	• Na₂CO₃ + • CaCl₂ +	21150 + 2002 21150 + 2003	∆H=+85kJ ∆H=-20kJ	
		add	$CaCO_3 + 2$	NaCl —	Na₂CO ₃ +	CaCl ₂	AH=+20kJ	
100	Kill bacteria/fungi	the water. It also inactivates viruses. It is also added to drinking water						
100		but at much lowe	r concentrat	ions.			ing warer	
		1 st mark: rinse the burette with (thiosulphate) solution.						
10h(i)	Answer to include:	2 nd and 3 rd marks for	or two of the fo	ollowing poi	nts: ma (thiog	ulphata) Daadu	a should be	
100(1)	Answer to include.	scale with	Filter funnel to s	solution draine	d to solution	n run into made t	rom bottom	
		thiosulphate solution	en	isure no air bu	bbles scale	reading of th	e meniscus	
		Redox equation: NaU	CI + 21 ·	+ 2H -	→ 1 ₂ +	Naci + H;	20	
10b(ii)	$2T^{-} \rightarrow T_{2} + 2e^{-}$	Oxidation step:	2I-	-	→ I ₂ +	2e ⁻		
		Reduction step: NaO	Cl + 2H⁺ ·	+ 2e⁻ -	→	NaCl + H	20	
		$S_2O_3^2$ n o. of mol = cor	centration x volu	ume = 0.0010	01itres X 0.0124	ł mol l⁻¹ = 1.24x10	⁻⁵ mol	
			+ 21Na252	$O_3 \rightarrow a$	(Nal + M	$10_{2}S_{4}O_{6}$		
		6.20×10 ⁻⁶ n	nol 1.24×10 ⁻⁵ mo	ol				
10h(iii)	6 20x10 ⁻⁵ mol l ⁻¹	NaOC	+ 2I ⁻ + 2	H⁺ → I	2 + NaCl	+ H2O		
100(11)	0.20210 11011	1mol		1m	ol			
		6.20×10 ⁻⁶ n	nol	6.20x	10 ⁻⁶ mol	<i>(</i>		
		100cm ³ 1000cm ³	of swimming pool of swimming pool	lwater co lwater co	ntains 6.20x10 ntains 6.20x10)™ mol NaOCl)™ mol x ¹⁰⁰⁰ /100		
		$=6.20 \times 10^{-5} \text{ mol } l^{-1}$						
		45 000 litres of swim 45 000 litres of swim	ming pool water r ming pool water r	requires 400 requires 800	cm³ hypochlor cm³ hypochlor	ite to raise by 1pp ite to raise by 2n	om pm	
10c	44.4 litres	2500000 litres of pool water requires 800cm ³ x ²⁵⁰⁰⁰⁰ / ₄₅₀₀₀						
				= 44 =44	444cm³ 4 litres			

10d(i)	Answer to include:	1 st mark: ammonia is polar and trichloramine is non-polar 2 nd mark: electronegativity difference is bigger in N-H bond than N-Cl bond ∴ NH3 is polar and NCl is non-polar							
10d(ii)	Substance with unpaired electron	Free radico react with	Free radicals are very reactive particles which have an unpaired electron. The free radical will react with a large variety of substances to achieve the pairing of the unpaired electron.						
10d(iii)	propagation		Step	Reactants	Products (after Arrow)				
			Initiation	No free radicals on Left Hand Side	Free radicals onRight Hand Side				
			Propagation	Free Radicals found on bo	th sides of arrow				
			Termination	Free radicals on Left Hand Side	 No free radicals on Right Hand Side 	1			